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Transformation toughening 
Part 1 Size effects associated with the thermodynamics of 
constrained transformations 

F. F. LANGE 
Structural Ceramics Group, Rockwell International Science Center, Thousand Oaks, 
California 91360, USA 

The thermodynamics of the constrained phase transformation is presented with particular 
reference to size effects introduced by surface phenomena concurrent with the trans- 
formation, e.g., the formation of solid-solid surfaces (twins, etc.) and solid-vapour 
surfaces (microcracks). It is shown that these surface phenomena not only introduce a 
size-dependent energy term into the total free-energy change, but also reduce the strain 
energy associated with the transformation, which can result in a transformation at a 
temperature where IAGCl, the chemical free energy change, is less than Use, the unrelieved 
strain energy associated with the constrained transformation. The results of this analysis 
lead to a phase diagram representation that includes the size of the transforming 
inclusion. This diagram can be used to define the critical inclusion size required to 
prevent the transformation and/or to obtain the transformation, but avoid one or more 
of the concu trent surface phenomena. 

1. Introduction 
It has been shown that a stress-induced phase 
transformation can be used to increase the fracture 
toughness of brittle materials based on Zr02 [ 1-5  ]. 
Metastable, tetragonal Zr02 is the toughening 
agent. Transformation to its stable, monoclinic 
structure in the vicinity of the crack front is 
believed to be responsible for the increased frac- 
ture toughness. In fabricating these tougher 
materials, it has been found that retention of the 
tetragonal structure at room temperature (or 
below) is critically dependent on the size of the 
microstructure. In particular, a critical grain size 
or inclusion size exists, below which tile high- 
temperature tetragonal phase can be retained and 
above which retention is not observed. 

It would be instructive, from these observations, 
to determine: 

(a) the thermodynamic conditions under which 
the tetragonal structure can be retained upon 
cooling from its fabrication temperature; 

(b) how the stress-induced transformation con- 
tributes to fracture toughness. 

In this part, the first part of a series of articles, 
the theoretical aspects of phase retention will be 
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presented by examining the factors that affect the 
thermodynamics of a constrained phase trans- 
formation. Other articles in this series will address 
the theory of toughening phenomena and experi- 
mental aspects concerned with phase retention 
and fracture toughness for materials in the 
ZrO2-Y203 and Al203-ZrO2 systems. 

2. The ZrO2 (t) -* ZrO2 (m) transformation 
Although the succeeding sections are generally 
applicable for any transformation, the ZrO2(t)--* 
ZrOz(m) transformation will be used as an 
example. The tetragonal (t)-+ monoclinic (m) 
transformation in this system is athermal, dif- 
fusionless and involves both a shear strain and a 
volume change, for details see the reviews by 
Subbarao et  al. [7] and Heuer and Nord [8]. 
Although some differences of opinion exist, 
Bailey [9], Bansal and Heuer [10], and more 
recently, Buljan et  al. [11] have shown that 
the orientation relation between the monoclinic 
and tetragonal ( fcc)  unit cells is given by 
( l l 0m) [ l{100 t}  and [100m]l l [001t ] ,  which 
can be represented by the "stress-free" or uncon- 
strained strain tensor: 
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where a, b and c are the cell dimensions of the 
respective tetragonal (t) and monoclinic (m) struc- 
tures, and/~ (< 90 ~ is the monoclinic angle. Sub- 
stituting the appropriate crystallographic data into 
Equation 1, it can be shown that the transfor- 
mation involves a large shear strain (~ 8% and a 
substantial volume increase (3 to 5%)*. 

During cooling, the tetragonal~monoclinic 
transformation of pure ZrO2 begins at ~" 1200~ C 
and proceeds over a temperature range (e.g., 
1200 to "" 600 ~ C) until the transformation is 
complete [6]. Alloying oxides (e.g., Y203, CeO2, 
etc.) lower the transformation temperature. In 
this regard, the ZrO2-Y203 system has been 
studied. Srivastaba et  al. [13] have shown that 
additions of Y2 03 to ZrO2 lower the transfor- 
mation temperature to 565~ where a eutectoid 
exists at about 3.5mo1% Y203. Scott [14] and 
Stubican et  al. [15] appear to be in agreement. 

3. Thermodynamics of a constrained 
transformation 

Classical theory has shown that retention of the 
tetragonal structure depends on the magnitude of 
the strain energy arising from the elastic con- 
straints imposed by surrounding material on shape 
and volume changes associated with the trans- 
formation. Constraint can arise from several 
sources. First, if the polycrystalline body is single- 
phase, neighbouring grains, each with a different 
crystallographic orientation, will constrain the 
anisotropic strain of one another. Second, the 
transforming phase can similarly be constrained by 
a second-phase matrix, as in the case of a two- 

phase material. The strain energy arising from 
these contraints can be reduced by microcracking 
and/or plastic deformation (e.g., twinning). In 
particular, both microcracking and twinning can 
accomodate some of the volume- and shape-change 
associated with the transformation and can reduce 
the constraint imposed by the surrounding 
material. Thus, as will be shown, retention of the 
tetragonal phase not only depends on the elastic 
properties of constraining material, but also on 
the possible occurrence of microcracking and/or 
twinning during transformation. 

3.1. Chemical free energy against strain 
energy 

To examine the thermodynamics of the con- 
strained ZrO2(t)2 ~ ZrO2(m) reaction, let us first 
consider a stress-free, spherical inclusion of the 
tetragonal phase embedded within a matrix 
material, as shown in Fig. la. On transforming to 
its monoclinic phase~, a state of stress arises 
within both the transformed inclusion and the 
surrounding matrix because of the constrained 
volume and shape changes. The differential free 
energy, AGt,m, between these two states per unit 
volume of transformed material is 

Aat-~rn = ~ e - -  a~ + vsme -- Uts~ + V~a -- V~ (2) 

or 
AGto m = - -  AG e + AUse + AUs,  (3) 

where AG e is the chemical free energy (dependent 
on temperature and composition), AUse is the 
strain energy associated with the transformed 
particle (for the case considered here Ute = 0 and 

*The crystallographic data of Pratll and Subbarao [12] can be extrapolated to room temperature to show that the 
volume increase changes from 3% at 1150 ~ C to 4.5% at room temperature; # is relatively insensitive to temperature. 
t i t  is assumed throughout this paper that the whole inclusion transforms in a spontaneous and uniform matter. 
Although this assumption neglects the conditions for the nucleation and growth usually associated with these trans- 
formations, it does allow us to examine the limiting condition concerning the thermodynamic stability of the con- 
strained inclusion. 
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Figure 1 (a) Constrained trans- 
formation where the initial state 
(t) is stress-free and (b) initial 
state under residual stress, a r .  

/ / / 

AUs~ = U m) and surrounding matrix which is 
usually less senstive to temperature and com- 
position changes, and AUs is the change in energy 
associated with the surface of the inclusion. 

The condition for the transformation requires 
that AGt,m ~< 0, or, from Equation 3* 

IAaCl t> g ~  + AUg. (4) 

It can be seen that, since U~ is always positive, 
the constrained transformation temperature will 
be different from that for the unconstrained case 
(IAG~I~>Us). For ZrO2, constraint lowers the 
transformation temperature. 

The magnitude of the strain energy will depend 
on the elastic properties of the transformed 
inclusion and the surrounding matrix, the inclusion 
shape, and the transformation strain. Eshelby [16] 
has shown that 

U g  1 I t ~*.*ij, (4) 

where a I defines the uniform stress state within 
the transformed inclusion, and ~t is the "stress- 
free" transformation strain [e.g., given by 
Equation 1 for ZrO2(t) -~ ZrO2(m)]. 

The effect of the elastic properties of the con- 
straining matrix can be examined by assuming 
that the transformation only involves an isotropic 
volume expansion, tt~=--~AV/V. With this 
assumption it can be shown that, for the case of a 
sphere, 

where 
2E1E2 

k= (7) 
(1 + Vl)E2 + 2(1 -- 2v2)E 1 

and E1 and /?2 and Vl and v2 are the Young's 
moduli and Poisson's ratios of the matrix (1) and 
transforming particle (2), respectively. That is, the 
greater the elastic modulus of the constraining 
matrix, the greater the strain energy and, thus, 
the lower the potential transformation tempera- 
ture. For ZrO2, the constrained transformation 
temperature will be inversely proportional to the 
rigidity of the  constraining matrix?. 

Alloy additions that lower the unconstrained 
transformation temperature (i.e., additions such as 
Y2Oa that decrease IAGCl) will also lower the 
constrained transformation temperature. 

3.2. Effec t  of  residual stresses 
In Section 3.1. it was assumed that the initial 
tetragonal state was free of residual stresses. This 
is not the normal situation since residual stresses 
will arise during fabrication (e.g., during cooling 
from the fabrication temperature as a result of 
thermal expansion mismatch with the matrix 
phase). As will be shown, these residual stresses 
will either increase or decrease the strain energy 

*Throughout this paper, only temperatures where AG e is negative are considered; thus, - -  AG e is written as IAGel ', for 
convenience. 
t i t  should be pointed out that  the strain energy term in Equation 3 is only significant for reactions involving relatively 
small changes in chemical free energy (< several kcal tool- l) .  It is usually neglected for most  chemical reactions where 
[AGe[ >~ AUse. 
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term in Equation 3 and thus ~ influence the 
potential transformation temperature. 

Fig. lb illustrates the spherical tetragonal 
inclusion in a state of residual stress and in its 
transformed, monoclinic state. The residual stress 
state is defined b y a  ~ which, according to Eshelby, 
arises from a "stress-free" strain t r, for example, 
the strain an unconstrained inclusion would 
exhibit due to thermal contraction. The strain 
energy associated with the tetragonal state is 

g t  1 r r = ~ a / m i -  (8)  

Using the principle of superposition, it can be 
shown that the strain energy in tile transformed, 
monoclinic state is 

U g  1 I + r t r ~(lT /j + = _ a ~/)(t/i _ t/i), (9) 

where a i and t t are those stresses and strains 
defined earlier for the transformation from an 
unstressed tetragonal particle. The -+ sign in front 
of  the residual stress/strain terms in Equation 9 
arises because the individual components of these 
tensors can have either the same sense (+) or the 
opposite sense (--) relative to the components 
associated with the transformation. 

The free-energy change associated with the 
transformation shown in Fig. lb is 

~C~+m - AG c + Ug -- U~ + AU s. (10) 

Substituting Equations 8 and 9 into Equation 10 
gives 

AGt+ m AG e + U O I z + r t + A U s ,  
- -  + G i j  tr i] --  U i.i t i i  

(11) 

where U ~ is the strain energy defined by Equation 
5 for the case where the tetragonal particle is 
initially stress-free. 

Equation 11 illustrates that the residual stress 
and strain fields either increase or decrease the 
strain energy depending on their sense. That is, if 
the transformational fields are compressive and 
the initial residual fields are tensile, ~ e  strain 
energy is diminished. If, on the other hand, the 
residual field has the same sense as the transfor- 
mational field, the strain energy is increased. This 
latter case will decrease the transformation tem- 
perature. 

4. Effect of inclusion size 
As mentioned in Section 1, experiments have 
shown that the retention of tetragonal ZrO2 is 
size-dependent. That is, a critical inclusion/grain 
size exists, below which retention can be achieved 
and above which it cannot. This size effect cannot 
be explained by the approach discussed above; 
what is required is a term in the free-energy 
expression (Equation 3) which takes account of 
the size of the transforming volume. 

4.1. Inf luence of AUs 
The change in the surface energy per unit volume, 
V, of  a transformed spherical inclusion can be 
expressed as 

AmTm - -  A t T t  6 (7m - -  gsTt )  
&U s - - - ,  (12) 

V D 

where A m and A t are the interfacial surface areas, 
7m and % are the specific interfacial surface 
energies in the transformed and untransformed 
states, V (V = rrDa/6) is the transformed volume, 
D is the diameter of the transformed inclusion 
and gs =At/Am" Substituting Equation 8 into 
Equation 9 and rearranging, it can be seen that the 
surface-energy term introduces a size effect, i.e., 
a critical particle size, De, above which the 
energetics of the transformation are statified (such 
that AGt+ m ~<0) and the transformation can 
proceed, 

6(Tin --gsTt) (13) 
D>~D e = [IAGCI_AUse] �9 

Garvie [17, 18] has used a similar argument to 
explain the experimental observation that uncon- 
strained tetragonal ZrO2 powders are obtained 
at room temperature when produced with a 
particle size less than 30 nm. In order to explain 
this size effect with the surface energy term, it 
was necessary to assume that 7m >gs%*" Based on 
this assumption and the condition that AUse = 0 
for the case of unconstrained powders, the critical 
particle size, Due, for the unconstrained powder is 

6(')'m -- gs')'t) (14) = - -  

Due iAGCl 

Substituting Equation 14 into Equation 12 and 
rearranging, the critical size for the constrained 

*Garvie [17, 18] neglected the possibility of  internal surface (twins) in the transformed particles which would have 
produced the same effect wi thout  the  assumption that  3"m > "ft. 
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Figure 2 (a) Transformation + 
microcracking, (b) transfor- 
mation + twinning and (c) trans- 
formation + microcracking + 
twinning. 

state can be related to the critical size for the 
unconstrained state by 

Due 
D e - (15) 

ZXU, e 
l - - -  

lAG c I 

Examination of Equation 15 shows that a critical 
size does exist when 12xGCl>2xU~ and that 

Dc >Due. 

4.2. Losss of constraint through 
microcracking and twinning 

As mentioned above, both microcracking and 
twinning can accompany the ZrO2(t)~ ZrO2(m) 
transformation. Microcracking and twinning both 
relieve some of the constraint associated with the 
volume and shape changes, respectively. In both 
cases, relief of constraint decreases the strain- 
energy associated with the transformation. As will 
be shown, the occurrence of microcracking and/or 
twinning results in a size-effect for cases when 
tACCl < 2XU~e. 

Let us first consider the case of microcracking. 

Assume that, during transformation, a small flaw 
at the inclusion-matrix interface extends and 
becomes an arrested microcrack, as shown in 
Fig. 2a (the growth requirements for such a crack 
are considered in [19-22]). A radial crack would 
be a likely type of crack due to the volume expan- 
sion associated with the transformed ZrO2 
inclusion. The presence of the crack will change 
the energetics of the transformed particle in two 
respects. First, the crack will relieve a fraction 
( 1  - -  f~) of the strain energy, AUse, associated with 
the uncracked, transformed system. Second, the 
crack introduces new surface. 

The change in free energy of this microcracked 
system can be written as 

Ac')'c 
AGt-.m = -- AG e 4- AUsefc q- 4- AUs, (16) 

V 

where the Ac'Yc/V term in Equation 16 is the 
energy per unit volume of transformed material 
associated with the crack surface; A c is the area of 
the crack surfaces, 7c is the fracture energy per 
unit area and V is the volume of the particle. By 
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deFming the area of the arrested crack with respect 
to the surface of the inclusion (A c = nD2gr 
using V "  67rD 3, Equation 16 can be rewritten as 

6"), e 
ACt m -- t,C  + t,U L +-n-- g~ 

6(3'm - -  gs~'t) 
+ (17) 

D 

Both fe and ge are numerical values that depend 
on the size of the arrested crack. Previous work 
[21, 22] has shown that fe and ge are weak func- 
tions of the initial flaw size responsible for the 
extended microcrack. 

Equation 17 shows that the size of the trans- 
formed particle is now contained in two terms, 
i.e., one associated with the energy due to the 
crack and the other associated with the energy 
due to the surface of the inclusion. Again, 
the transformation will only proceed when 
AGt, m ~< 0 which, from r6arranging Equation 17, 
defines a critical size for transformation and 
microcracking: 

6[Tcge + "Ym --gsTt] D>~Der = (18) 
IAG~I - - / ' , u~L  

Examination of Equation 18 shows that the size 
effect for transformation and microcracking exists 
when IAGel > AUsef ~. 

Let us now consider the conditions for trans- 
formation and twinning (Fig. 2b). In a manner 
similar to that discussed for microcracking, the 
energetics of the constrained transformation in 
which the transformed particle forms twins can 
be written as 

6")'Tg T 
Aet_~m = -- AG e + AUsef T + + AU s. 

D 
(19) 

where the 67TgT[D term is the energy of the twin 
surface per unit volume of transformed material 
and the total area of the twin boundaries, A T , is 
normalized by the surface of the area of the particle 
(gr = Ar/nD2); the factors f r  and gT are dimen- 
sionless values, fT < 1, gT > 0 and 7T is the twin 
boundary-energy per unit area. 

Similar in all respects to the microcracking 
phenomena, a critical particle size exists, above 
which transformation and twinning is possible: 

D/> De T = 6(')'WgT + "/m - -  ge')'t) (20) 
IAGr -- AUsefT 

Again, this size effect only exists for the condition 
IAGCl > AU~fT. 

Now let us consider the case where both micro- 
cracking and twinning accompany the transfor- 
mation, as shown'in Fig. 2c. By using the same 
approach, it can be shown that a critical inclusion 
size exists, above which transformation, micro- 
cracking and twinning are possible: 

D/> De e'T = 6(Tege + 7tgt + 7m -- gs 3'0 (21) 
IAGCl - AxU~LfT 

Similarly, the condition where this size effect will 
be observed is IAGr > AUsefef T. 

5 .  D i s c u s s i o n  
The classical theory of constrained phase trans- 
formations, as outlined in the first part of this 
paper, has shown that the potential for lowering 
the transformation temperature primarily resides 
with the magnitude of the strain energy that 
would arise if the transformation were to proceed. 
For a given transformation, the strain energy 
depends on the elastic properties of the con- 
straining matrix and the residual strains that pre- 
exist in the untransformed state. The strain energy 
can be maximized by maximizing both the elastic 
properties of the constraining matrix and the pre- 
existing residual strains which must have the same 
sense as the transformational strains. Residual 
strains of opposite sense decrease the strain energy. 
For the case of ZrO2, the ideal constraining matrix 
would not only have a high elastic modulus, but 
a higher thermal expansion coefficient than tetra- 
gonal ZrO2. 

The constrained transformation temperature 
can also be decreased by decreasing the change in 
chemical free energy, IAGel. This can be accom- 
plished by alloying with an additive (e.g., 5(203, 
CeO2, etc.) that is known to decrease the uncon- 
strained transformation temperature. 

In addition to these more classical results, it 
has been shown that the thermodynamics of the 
constrained transformation depend on the size of 
the transforming volume. This size-effect is intro- 
duced through surface changes associated with 
the transformation. Three different surface related 
phenomena, microcracking, twinning and micro- 
cracking combined with twinning, have the poten- 
tial for producing a size-effect for conditions 
where [AGel ~< AUs~. An additional size-effect can 
arise when IAGel/> AUse, resulting from changes 
associated with the inclusion-matrix interfacial 
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energy. The question now is, which of these size 
effects is most critical and best explains the 
experimental observations. 

Equations 18, 20 and 21 can be rearranged tc 
express the normalized critical particles sizes for 

(a) microcracking: 

D~ _ _ 1 + [Tcgc/(Tm --gsTt)] . (22) 
Due 1 -- (AUsefe/IAG el) ' 

(b) twinning: 

D T _ 1 + [TTgT/(%n--geTt)]  . (23) 
Due i -- ( AUsefw/IAGel) ' 

and 
(c) microcracking plus twinning: 

De e''r 1 + [(Tcgc + "/'TgT)/('Ym --gcTt)] 

Due -- 1 - (AUsefJrllAGel) , (24) 

where Due is the critical particle-size for uncon- 
strained powders, as def'med by Equation 14. By 
making reasonable assumptions concerning the 
values of re, JeT and relative values for the surface 
energy terms, one can obtain a comparison between 
Equations 15, 22, 23 and 24 to judge the dominant 
size effect. 

Recent results of Ito et aL [22] have shown that 
a single radial crack in its arrest position relieves 
approximately 10% of the strain-energy associated 
with the residual stress-field of a spherical inclusion. 
Thus, a value of fc = 0.9 was chosen. Porter [23] 
has calculated that about 70% of the strain-energy 
for the constrained Z r Q  transformation is asso- 
ciated with shear strain. Twinning is expected 
to relieve a large portion of the strain-energy and, 
thus a value of fT = 0.67 was chosen, i.e., it was 
assumed that 33% of the strain energy can be 
relieved by twinning. With regard to the surface 
energy terms, it is reasonable to assume that 
the surface energy of the crack is greater than 
both the surface energy of the twin and the 
differential interfacial energy of the two states, 
i.e., %go > 7TgT ~ (Tin -- gsTt)- Values chosen 
are: 

"/'e ge 
- 10 

(~ '=  - gs3 ' t )  
and 

7Tge 
- -  1 .  

( ' ) ' r n  - -  g s ' Y t )  

Substituting the values of these parameters into 
Equations 15 and 22 to 24, the normalized particle- 
size was plotted as a function of AUse/IAGel, as 
shown in Fig. 3. 

Fig. 3 maps the size requirements for retaining 
the tetragonal phase and indicates the type of 
strain-energy relieving phenomena (e.g., twinning, 
microcracking) that would be observed if these 
requirements are not met. Since AUse is much less 
dependent on temperature and alloying compo- 
sition relative to lAG e I, the axis of abscissas in Fig. 
3 can either represent increasing temperature or 
increasing alloy composition. 

It should be noted first that the normalized 
critical size for each phenomena tends to inCmity 
at the temperature where lAG e I equals the relieved 
strain energy. Also, the rate at which the critical 
size decreases with temperature is controlled by 
the numerator of each function. For a given ZrO2 
alloy, the first size-effect encountered during 
cooling (decreasing AUse/IAGel) will be that 
due to both microcracking and twinning which, 
when combined, results in the largest decrease 
in strain energy. At a given temperature, where 
[AGCl > AUsefefT, transformation will be accom- 
panied by both microcracking and twinning when 
the normalized size of the transforming inclusion 
lies above the curve labelled "twinning+ micro- 
cracking". With a further decrease in temperature, 
i.e., when IAGCl > UsefT, the size-effect for trans- 
formation and twinning arises. Normalized particle 
sizes that fall within the area bounded by the 
"twinning only" and "twinning + microcracking" 
curves will be transformed and twinned. Fig. 3 
shows that the condition for transformation and 
microcracking (at temperatures where A G e >  
AUsefe) is only of academic interest. This size 
requirement is less stringent than the previous 
two. The last size effect, due to the change in 
interfacial energy, which can only occur at tem- 
peratures where [AGCl > AUse, has a limited phase 
field in Fig. 3 between the curves marked "twinning 
only" (upper bound) and "no strain energy relief" 
(lower bound). This phase field indicates a limited 
inclusion size-range for transformation without 
twinning and microcracking, 

Since each of the functions illustrated in Fig. 3 
defines conditions where AGt_~ m = 0, it is obvious 
that these functions defme phase boundaries. 
Therefore, they can be used to construct a phase 
diagram to indicate the surface phenomena that 
will or will not accompany a transformation in 
normalized inclusion size against A Use/IA Gc I (e.g., 
temperature) space. As shown in Fig. 4, four phase 
fields are evident for the parameters used: (a) a 
tetragonal field, Co) a monoclinic + twinned + 
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Figure 3 Plot of  conditions where ~Gt~ m = 0 which includes various surface energy terms, as represented in normalized 
inclusion (grain) size against strain energy (~Use)/chemical free energy (LxG e) space. 

microcracked field, (c) a monoclinic + twinned 
field and (d) a monoclinic field without twinning 
or microcracking. Unlike conventional phase 
diagrams, Fig. 4 includes the size of the inclusion 
that is introduced through the various surface 
energy terms. Although Fig. 4 is derived for 
specific parameters and would quantitatively 
change for other parameters, its general character 
(i.e., phase fields) will remain unchanged if 

fT > fc and 3"egc > 7TgT" 
The phase relations in Fig. 4 predict the fol- 

lowing observations. If a composite with a wide 
distribution of inclusion sizes is cooled to a tem- 
perature where AU~/[AGel = 1.2, there will be a 
range of inclusions below a critical size still in their 
tetragonal state. Somewhat larger inclusions will 
be transformed and twinned, and still larger 
inclusions will be transformed, twinned and micro- 
cracked. If the same composite were only cooled 
to the temperature where AUse/IAGC[ = 1.55, 
inclusions larger than D e would be transformed, 
twinned and microcracked and smaller inclusions 

would be untransformed. Composites with a very 
narrow size-distribution would be in only one of 
these phase fields. If appropriate experimental 
techniques were developed to independently 
observe twinning and microcracking, a composite 
with a wide inclusion size-distribution could be 
used to experimentally-determine the phase boun- 
daries in Fig. 4. 

Since the abscissa can also represent increasing 
alloy composition at a fixed temperature, Fig. 4 
can be used to determine the effect of changing 
the alloy composition. For example, at a particular 
temperature and normalized inclusion size, an 
increase in alloy content would shift the trans- 
formation conditions from one phase field to 
another; an inclusion-size-composition phase 
diagram could be constructed at, for example, 
room temperature by heat-treating a number of 
different alloy compositions to increase the 
inclusion size, and then observing the inclusion 
size required for transformation, twinning and 
microcracking. 
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Figure 4 Phase regions defined by Fig. 3 indicating conditions of transformation and associated surface phenomena as 
a function of normalized particle size against temperature or alloy composition. 

Without specific knowledge of the phase boun- 
daries, it is obvious that the size effects discussed 
above are critical in fabricating a material in which 
the object is to retain the high-temperature phase 
upon cooling. If powder routes are used (i.e., 
sintering), powder sizes of less than D e are required 
since grain growth during sintering is inevitable. 
If a solid-solution precipitation route is used, heat- 
treatment must be controlled to avoid precipitate 
growth of size greater than De. Thus, strict micro- 
structural control is required in order that the 
hlgh-temperature phase should be retained below 
its unconstrained transformation temperature. 

On the other hand, the objective of fabrication 
may be to achieve the transformation but to 
avoid microcracking and/or twinning, as for the 
case of ferroelectrics. Ferroelectric materials are 
produced by constrained transformation. Twins 

(domains) form during the transformation, to 
primarily relieve strain energy (in non-conducting 
media, domains also reduce the external electric 
field due to polarization). Microcracldng has also 
been observed to occur during transformations. 
Work on ferroelectric material cites several grain- 
size phenomena consistent with the arguments 
leading to Fig. 4. Matsuo and Sasaki [24] showed 
that when PbTiO3 is fabricated with a grain size 
of about 10/lm, a high-microcracked body is 
produced upon cooling through its transformation 
temperature; however, a non-microcracked trans- 
formed material could be fabricated with a grain 
size of ~< 3 pm. Buessem et al. [25] indicate that 
as the grain size of BaTiO3 is reduced to about 
1 pm, twinning is prevented during the transfor- 
mation, which leads to a high permittivity. Thus, 
it can be seen that further work in defining the 
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phase  f ields s h o w n  in  Fig. 4 is o f  i m p o r t a n c e  for  

a var ie ty  o f  useful  cons t r a i ned  phase  t ransfor -  

ma t ions .  
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